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* Network is a compound model
of several building blocks (ion
channels, morphologies,

synapses...)

A Morphological diversity of neurons:
(a) m-types, (b) cloning

B Microcircuit anatomy: (a) Microcircuit dimensions, o Reconstructing

(b) m-type distribution, and morphology selection
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microcircuit connectivity

« Simulating the network means
solving the time dimension

« The network can be simulated
under spontaneous or evoked

activity, in-vitro or in-vivo
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Spontaneous network activity

«  Some brain regions contain neurons that are spontaneously and persistently active (pacemaker)
and they can drive the network dynamics

* Inthe lack of pacemaker neurons, as it happens in SSCx and hippocampus, the network is driven
by spontaneous synaptic activity

«  Without pacemaker cells and spontaneous synaptic activity, the network should be silent (see
later)

* Under spontaneous network activity, the network can show different dynamics depending on the
region of interest

«  Studying the spontaneous activity means studying the network at its resting state



Evoked network activity

We can ask what happens if | perturb the network

* Internal dynamics contributes to the network activity, but regions are heavily interconnected, and
a region that is only driven by internal mechanisms is far from the reality

*  We can model external innervations (lecture 7). In SSCx (Markram et al., 2015) we implemented
thalamic projections, while in the hippocampus (Romani et al.) we implemented CA3 projections
or Schaffer collaterals

*  We can mimic an external input by injecting currents in the somas

« We can inject an absolute amount of current or a percentage of the current necessary to make

the cell fires (to bring the voltage to spike threshold) (Markram et al., 2015)



In-vitrosimulations

*  Most of the data are obtained in-vitro

« ltis often useful to replicate in-vitro conditions. We may want to validate the network, get insights
in some experimental results, extent some experimental findings

*  In-vitro conditions may differ from in-vivo ones for several reasons

+ The region of interest is cut and removed from its context. As a consequence, it does not receive
most of the input from connected regions, and there is not the same background activity

« The external solution is different. It does not contain important molecules (ions, hormones,
neuromodulators...)

« The solution is also altered on purpose to simplify the experiments. For example, an higher Ca?*
concentration is normally used to make the synapse responses stronger and more easily

recordable
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/n-vive simulations

* In-vitro conditions are useful to study the system, especially because we can access much more
data to validate our model

*  Anyway, the behavior of the network in-vitro may not occur in-vivo

«  Capturing what would happen in-vivo is not trivial. We have to reproduce the extracellular solution
and the background activity

«  While we cannot reproduce exactly in-vivo condition, we can approximate it to have an idea in
which direction the system is moving when passing from in-vitro to in-vivo

« Markram et al. (2015) approximate in-vivo condition by lowering extracellular calcium
concentration and applying tonic depolarization around the rheobase (voltage at the spike

threshold) (see later)



Define the simulations we want to run and set up the parameters accordingly
« Basic simulation parameters (duration, dt, seed...)

«  Conditions (extracellular ion concentrations...)

«  Stimuli (in any) (from projections or by injecting current)

* Recorded variables (spike times, voltages... See later)
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sSensitivity analysis

« If the network model contains random processes (and in most of the cases, it should contain
them), the simulation should be replicated several times with different random number seeds

*  Network and network simulations depend on many parameters. We want to avoid that our results
depend too much from the particular set of parameters used

« The variability in biology is quite high, and our results are not very strong if they are valid only for
a very narrow space of parameters

+ To address this problem we can replicate the simulations with slightly different parameters on
insert some noise in the parameters (e.g. insert noise in the stimuli) to check the robustness of
the results

« An additional option is creating different instances of the network model, where you change key

parameters still in biological range (Markram et al. (2015) created 6 equivalent circuits)
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Why do we want to simulate the network?

« Test the circuit « Sanity/quality checks, validations
« Study the network regimes or « Predictions, validations

answer general questions

« Answer region-specific questions « Predictions, validations

=PrL
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Summary 1

« There are several reasons why we want to simulate the network

* In any case, first we have to design our simulations, that is making explicit
aim of the simulations, conditions, parameters, inputs, recorded variables

* We have to set up the simulations accordingly

* In most of the cases, more than one simulation is necessary. We can try
different random number seeds or slightly different conditions to make our

results more robust
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Lecture Overview
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 Approaches

* Applications
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During the simulation, you can output a series of parameters:

« Spike times
* Voltages
* Currents

« (Conductances
 |on concentrations

* Any other variables of the model

=PrL
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Analyses

Additional analyses are often required:

Raster plot

Instantaneous firing frequency
Inter-spike interval (I1SI) histogram
Mean firing frequency (histogram)
Voltage traces

Visualization

Local-field potential (LFP)
Voltage-sensitive dye imaging (VSDI)

=PrL
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Mean firing frequency distribution
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Frame during the simulation of the hippocampus microcircuit.

E P F L Colors represent voltages
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Local-field potential (LFP)

soma potential
B 20 P

» The local field potential (LFP) refers to the T
S o

electric potential in the extracellular space £ -u
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around neurons. The LFP is a widely 8 80

—-60

available signal in many recording
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« Several methods are available to estimate spike amplitude (mV) ¢ (ms)

LFP from network parameters (Reimann Linden et al., (2014)

et al. 2013; Linden et al., 2014).
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Voltage-sensitive dyes are organic
molecules or proteins which reside in a
cell membrane and change their optical
properties in response to a change in
membrane potential. They have been
used to follow population changes in
membrane potential over large regions of
the brain.

Newton et al. (2021) developed a
method to compute an in-silico VSD
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Simulate the network

« Test the circuit
« Study the network regimes or
answer general questions

« Answer region-specific questions

=PrL

Sanity/quality checks, validations

Predictions, validations

Predictions, validations
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» Select one or multiple experiments

eproduce (as much as possible) the Circuit building and simulation

same bath conditions (in-vitro) or the @
same in-vivo conditions
* Reproduce the same stimuli (if any) Refinements Model life-cycle

* Reproduce the same analyses

« Compare and discuss results R
Circuit validation

« Validations often lead to improvements
of the model and so the release of new

versions
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Test the network

« Even if each building blocks are apparently well-constrained, the correct
behavior of the network is not granted

« The interaction of the different building blocks is often complex, and the
overall behavior cannot be predicted by looking at each blocks

« Extensive testing of the network is essential

« It can unmask incorrect behavior of the building blocks and assumptions

« Some common tools and strategies can be described...
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Let's switch on the network...

« The first check we want to make

running a test simulation with default

parameters

« Check the spontaneous activity without
applying any stimuli

« Obvious misfunctioning can already

appear here

=PrL
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Look for stable state

Romani et al.
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Voltage (mV)
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Depolarization block!
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« The mean firing rates of the different cell
types give an overall activity of the
network and its different populations

 |f data are available, this can be an useful
validation

* In any case, the research should have an
idea of the network activity under certain
condition

 Cells too activity or silent could be an

indication of a misfunctioning
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 Network manipulation is an useful

approach to detect misfunctionings m—roforence

B no inhibition

« We apply simple manipulations (we 16000

change only one parameter at the time) 140007
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Romani et al.
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Alter spontaneous synaptic events

* In this series of manipulations, we
disable the spontaneous synaptic
activity in groups of synapses

« The expected results is to have a

reduced network activity
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Study the network regimes or answer general questions

« The network model is a system that can be quite complicated on its own
« Study the model to have insights into the real system

« Characterize the input-output (I0) function of the model

« Characterize in which different (steady) states the model can be

« It could be synchronous, asynchronous...

« We can look at spike correlation, LFP...
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Answer region-specific questions

« Each brain region has its own specific roles and properties

* The research on each brain region has its own questions

 Once the model is extensively validated, we can use the model to make
predictions

« We can support an existing theory, reveal the mechanism behind a given
behavior, predict the behavior of the system in conditions that are not

possible experimentally
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Summary 2

« Closer is the model to the biophysical system, more complicated it will be to study it

« We can access all the variables of the model, and we have a vast repertoire of
analyses to answer our questions

« Check the default model to spot any problems

« The model can be checked by altering it when the expected result is known

« Validate the emergent properties (that emerge from the interaction of model parts)

* Use the model to make predictions

« There is no magical recipe to check, validate and use the model to make prediction

but we can learn from experience
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Lecture Overview

« Scope
« Approaches

* Applications
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Simulate the network

« Test the circuit
« Study the network regimes or
answer general questions

« Answer region-specific questions
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Simulate the network

« Test the circuit
« Study the network regimes or
answer general questions

« Answer region-specific questions
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Testing the hippocampus model
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Testing the hippocampus model
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Testing the hippocampus model
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Testing the hinpocampus model

« Under spontaneous activity the network is too active compared to
experimental data

« Removing minis only decreases slightly the firing frequency. Without minis
there is no ‘driving force’

« By disconnecting the cells, the activity fade out. Once, the cells are
reconnected, there is no more activity

« It seems that the initial excitation (transient) reverberates through the
network for the entire length of the simulation

« Connections between cells may be too strong or cells too excitable

=PrL
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Testing the hippocampus model
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Testing the hinpocampus model

An important parameter we did not match was the divergence from PC to
PC and INT

By matching it, we could improve connection probability between PCs, and
between PC and INT

This was the major improvement in v6

While this certainly improved the behavior of the network, it did not solve
completely the problem and the network was still too active

We explored our other hypothesis: the cells are too excitable
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Testing the hippocampus model

« If few spikes of the initial transient can
‘survive’ in the network, it could mean
that the EPSPs generate other spikes
without loss of activity

« We tested cells by placing 1-10
synapses on different  dendritic
locations and stimulate them
synchronously

« Some location leads to spike generation
following a single EPSP only, that is not
physiological
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Testing the hinpocampus model

« The single cell models were constrained using somatic features, that are
the experimental data normally available

* Inside a big network, most of the activity occurs at level of dendrites, that
should be constrained accurately

« We undertook a subsequent refinement of the single cell models

* We incorporated the new cell models into the network generating v7

« Now the behavior of the network is much more in line with the experimental

findings
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Testing the SSCx model

+ The network shows bursts of activity that

should be further investigated v

« Most of the data come from (in-vitro) vil

experiments that uses high [Ca?+], (and 0
low [K*],)

* In-vivo conditions have a lower [Ca?*], and
higher [K+],

* higher [K*], can be mimicked with a tonic
depolarization

* lower [Ca?*], can be mimicked with a

change in release probability

E P F L Markram et al., 2015
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Simulate the network

« Test the circuit
« Study the network regimes or
answer general questions

« Answer region-specific questions

=PrL
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A Virtual brain slice D MEA recording
*  Virtual brain slice of 7 microcircuits

* In vitro experiments are typically
performed at 2 mM [Ca?+],, while the
level of [Ca?*], in vivo is reported to
lie in the range 0.9-1.1 mM

+  Slow oscillatory bursts in high [Ca?*],

* asynchronous and irregular activity in

low [Ca?+],
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The mechanism underlying this sharp 2.0 15 145 14 13 12
transition is likely to involve the differential _—

Ca?* sensitivities of inhibitory and

excitatory synapse types. Indeed, we N . 4{ — — - —
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i

1.3 mM alters the ratio between excitatory % l
and inhibitory synaptic PSPs by a factor of § l ‘ E\ { {] ! [V/ C [r + .
~3.5, in favor of inhibition. This suggests 2 oo FEd E } $ ‘ { :
the existence of a threshold level of Ca* § s __| " ﬁ L S ]
beyond which inhibition is insufficient to g — i # g % ; ; ; ; E ;
prevent a supercritical state. [ { i ! j f f j f § l i

oo "EAES :
Markram et al., 2015 I ! {

=PrL ]



Single synchronous spike to activate a progressively
increasing number of fibers innervating the center of
the mesocircuit.

While under in-vitro-like conditions (Ca®* 2 mM, 0
dep.), stimulating as few as four thalamic fibers D
produced all-or-none behavior, indicative of a
regenerative state that spread across the whole
mesocircuit, under in-vivo-like conditions (Ca?* 1.25

mM, 100% dep.), the activity remained localized.
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In-vitro



In-vivo



Activity should be evoked

Activity is spontaneous

Bursting activity

No bursting activity

Markram et al., 2015
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Simulate the network

« Test the circuit
« Study the network regimes or
answer general questions

« Answer region-specific questions

=PrL
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Reproduce an experiment: select a paper/experiment

J Physiol 574.1 (2006) pp 195-208

Integrative spike dynamics of rat CA1 neurons:
a multineuronal imaging study

Takuya Sasaki, Rie Kimura, Masako Tsukamoto, Norio Matsuki and Yuji Ikegaya

Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
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Local connectivity patterns

=PrL

A. Feedforward inhibition

>
output

B. Feedback inhibition
> Input

output

Output

=2
L
v

C. Recurrent excitation

output
’JL\ ‘
E

L
o— |
.|

input | | input

Figure 8-1. Basic local circuit interactions. A. Feedforward inhibi-
tion. Axon collaterals from excitatory afferent fibers contact local
interneurons. The additional synaptic delay compared to direct
afferent excitation onto principal cells provides a time-dependent
sequence of excitation and inhibition from single afferent inputs.

B. Feedback inhibition. Axon collaterals from local principal cells
contact local interneurons, providing a period of inhibition of prin-
cipal cell activity following the generation of an output. Interneuron
populations involved in A and B are not always mutually exclusive.

| > )

D. Mutual inhibition

C. Recurrent excitation. Axon collaterals from local principal cells
also contact other local principal cells, providing an excitatory
mechanism for concerted, temporally coordinated population out-
put. D. Mutual inhibition. Some interneuron subtypes contact other
interneurons as well as principal cells, and some interneurons con-
tact other interneurons exclusively. This pattern of connectivity can
serve to impart spatiotemporally coordinated patterns of excitation
and inhibition in the local circuit leading to rhythm generation.
Filled circles, excitatory synapses; open circles, inhibitory synapses.

Andersen et al., 2007



Reproduce an experiment: understand the main point(s)

« Stimulation of SC (CA3 PC axons) and
recording from CA1 cells (mainly PCs)

* 1/O curve is quasi linear thanks to the
feedforward inhibition

*  When they apply a GABAAR blocker as
Gabazine, the 10 curve saturates very

quickly
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« P7 Wistar/ST Rat

* Slice cultures
B Spike No spike
L

« Horizontal slice of 300 ym
- Bath: 1.4 Mg?+, 2.4 Ca?+

~> Cell attached

--r>Somatic Ca?* (\\\W 1sec
: VVJ. "V\’V‘va

« Ca?*imaging B Toen SRR, 2]
I T — i S e A R T S e |
S Iy, ' —Stim. artifact :
o o : Cell attached L '
¢ 32 C 4 \“\ any : :
LA . - *~spike '
[ \ ?‘Eﬁ"ul"‘,i‘:l. - | Somatic Ca2* =" ’.J&%E
* |ncision was made between the N i dive |

E Optical fiber volley

CA2 and CAS3 regions and between

CA1 and the subiculum
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» Electrodes were placed in the CA1

stratum radiatum
» single pulse (50 ps, 60—270 uA)

were applied every 30 s to activate

Schaffer collateral axons

=PrL

B Spike No spike
L
~> Cell attached
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* Repeat the protocol with the

addition of Gabazine, an inhibitor of

GABAAR

=PrL
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Reproduce an experiment: set up the simulation experiment

P7 Wistar/ST Rat

Slice cultures, 300 ym

Bath: 1.4 Mg?+, 2.4 Ca2+
Ca?* imaging

32°C

Single pulse (50 ps, 60-270

MA) were applied to activate
Schaffer collateral axons

Gabazine

=PrL

Adult rat

Slice of 300 ym

Bath: 1.4 Mg?+, 2.4 Ca2+
Spikes

32°C

Activation of an increasing
number of projections

Cut connections from INT
(synaptic weigths = 0)
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* The validation failed

« This induced the revision of the SC

* To have feedforward inhibition, the
IPSP needs to arrive within a
certain latency to decrease the
EPSP

« We reoptimized the SC synaptic
parameters to obtain a better

timing

=PrL

INT

PC

EPSP-AP | AP-IPSP
latency latency

< g

EPSP

4+—>

EPSP-IPSP ' - IPSP
latency
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Validation failure and revision of the experiment setup

* The validation continued to fail

* One of the problem is the number of SC fibers to stimulate because this is
unknown

« The normalization for the input and the output was also suspicious

« We could not easily obtain that all the neurons fire

« We came back to the experiment details

* 100% of the output corresponds to the point where all the 101 observed
cells fire

=> We selected only 101 cells and the minimum stimulus that can fire them all

- tid_ onsidered it 100%. Then we tested smaller percentages of the stimulus
cPAL
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Summary 3

« Extensive testing and validation lead to improvements and legitimate the
use of the model to make predictions

« Studying the properties of the network, its 10 function, the different stable
states, is fundamental for deciphering the role of the network in the brain

« Simulations should be set carefully to reproduce experimental conditions

« It is not always possible to perfectly match experimental conditions due to
limitation of the model or incomplete knowledge of the experimental setup

« This should be taken into account and discussed when comparing

simulation results and experimental observations

=PrL
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Lecture Summary

* A network model should be checked and validated not only at level of its
constituent but also as an whole

« Testing and validation build our confidence in the model and in the
predictions we can drawn from it

« It is important we spend time to define carefully the simulation setup to
better capture the experimental conditions we want to reproduce

« The model is an imitation of the system, but it allows maximum freedom to
manipulate and analyze the system

« In this sense, in-silico experimentations are complementary to experiments

=PrL
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What you have learnt

* Network, network simulations
« Different types of simulations
« Set up a simulation. Different outputs.

« Sanity/quality checks, validations, predictions

=PrL
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